S StreamNative

X . iy - [

Apache Pulsar™ vs. RabbitMQ™
vs. NATS JetStream:

A Comprehensive Benchmark
Report of Messaging Platforms

Jihyun Tornow, Director of Product Marketing, StreamNative
Matteo Merli, Apache Pulsar PMC Chair, CTO, StreamNative
Elliot West, Sr. Platform Engineer, StreamNative

Alice Bi, Content Strategist, StreamNative

Kristin Crosier, Content Marketing Manager, StreamNative

Table of Contents

Executive Summary
Key Benchmark Findings
Background
Apache Pulsar
RabbitMQ
NATS JetStream

Overview of Tests

What We Tested
1. Node failure
2. Topic counts
3. Subscription counts
4. Backlog draining

How We Set Up the Tests
Infrastructure topology
Platform versions
Platform-specific caveats

Benchmark Parameters & Results

1. Node failure
Test Parameters
Test Results
Analysis

2. Topic counts
Test Parameters
Test Results
Analysis

3. Subscription counts
Test Parameters
Test Results
Analysis

4. Backlog draining
Test Parameters
Test Results
Analysis

Conclusion
Want to Learn More?

About StreamNative
References

© 0000 0 NNNNOVCGOOOGKOULE T bbb wN

N 2 = a a mm =2 3y Yy oy
N © © © 0 u om0l b o a2 ama

NN
W

NN
H b

Executive Summary

When building scalable, reliable, and efficient applications, choosing the right messaging and
streaming platform is critical. In this benchmark report, we compare the technical performances
of three of the most popular messaging platforms: Apache Pulsar™, RabbitMQ™, and NATS
JetStream.

The tests assessed each messaging platform’s throughput and latency under varying workloads,
node failures, and backlogs. Please note that Apache Kafka was not included in our benchmark
as Kafka does not support gueuing scenarios. For more information on Kafka, please refer to the
Pulsar vs. Kafka 2022 Benchmark report.

Our objective was to provide guidance on each platform’s capabilities and reliability, and help
potential users choose the right technology for their specific needs. The results of these tests
provide valuable insights into the performance characteristics of each platform and will be
helpful for those considering using these technologies.

Key Benchmark Findings

Figure 1 - Apache Pulsar, RabbitMQ, and NATS JetStream Comparison

Topic Counts Test

Topic counts = 50, 16 producers per topic;
1 subscription per topic, 16 consumers per subscription

Maximum Producer Throughput (msgs/s)

1,000,000 M

800,000
600,000
400,000

200,000
30K 50K

Pulsar RabbitMQ NATS JetStream

Producer P99 Latency (ms)

8,000 7,502
6,000
4,000

000 1,064

24
Pulsar RabbitMQ NATS JetStream

Subscription Counts Test

Limited to 50 topics, 16 producers per topic;
1 consumer per subscription

Maximum Consumer Throughput (msgs/s)

2.6M @ n=20 n = subscription count
2,500,000

2,000,000
1,500,000
1,000,000

500,000
48K@n:8 160K@n=32

Pulsar RabbitMQ NATS JetStream

Subscription Counts Achieved without Errors

5,000
5,000

4,000
3,000
2,000

1,000
64 128

Pulsar RabbitMQ NATS JetStream

Figure T - Apache Pulsar, RabbitMQ, and NATS JetStream Comparison

https://www.splunk.com/en_us/blog/it/comparing-pulsar-and-kafka-unified-queuing-and-streaming.html
https://streamnative.io/whitepapers/apache-pulsar-vs-apache-kafka-2022-benchmark

e Throughput:
o Pulsar showed a higher peak consumer throughput of 2.6M msgs/s compared to
RabbitMQ's 48K msgs/s and NATS JetStream’s 160K msgs/s.
o Pulsar was able to support a producer rate of TM msgs/s — 33x faster than
RabbitMQ and 20x faster than NATS JetStream.
e Backlog:
o Pulsar outperformed RabbitMQ during the backlog drain with a stable publish rate
of 100K msgs/s, while RabbitMQ's publish rate dropped by more than 50%.
e Latency:
o Pulsar's p99 latency was 300x better than RabbitMQ and 40x better than NATS
JetStream at a topic count of 50.
e Scalability:
o Pulsar achieved 1M msgs/s up to 50 topics and provided a publish rate above 200K
msgs/s for up to 20K topics.
o RabbitMQ was able to process 20K msgs/s, and NATS was able to support 30K
msgs/s for topic counts up to 500.

Background

Before we dive into the benchmark tests, let’s start with a brief overview of the architecture,
features, and ideal applications for each messaging platform.

Apache Pulsar

Apache Pulsar is an open-source, cloud-native messaging and streaming platform designed for
building scalable, reliable applications in elastic cloud environments. Its multi-layer architecture
includes multi-tenancy with resource separation and access control, geo-replication across
regions, tiered storage, and support for five official client languages. These capabilities make
Pulsar an ideal choice for building applications that require scalability and reliability.

One of the standout features of Pulsar is its shared subscription, which is handy for queuing
applications and natively supports delayed and scheduled messages. Additionally, Pulsar
simplifies application architecture by supporting up to 1M unique topics, making it widely used
for high-performance data pipelines, event-driven microservices, real-time analytics, and other
real-time workloads. Originally developed at Yahoo! and committed to open source in 2016,
Pulsar has become popular among developers and leading organizations.

RabbitMQ

RabbitMQ is a popular and mature open-source distributed messaging platform that implements
the Advanced Message Queuing Protocol (AMQP) — often used for asynchronous
communication between services using the pub/sub model. The core of RabbitMQ’s architecture
is the message exchange, which includes direct, topic, headers, and fanout exchanges.
RabbitMQ is designed to be flexible, scalable, and reliable, making it an effective tool for building
distributed systems that require asynchronous message exchange.

RabbitMQ is a good choice if you have simple applications where message durability, ordering,
replay, and retention are not critical factors. However, RabbitMQ has limitations in dealing with
massive data distribution and may not be suitable for applications with heavy messaging traffic.
In addition, the platform does not support other messaging patterns such as request/response
or event-driven applications.

NATS JetStream

NATS is an open-source messaging platform optimized for cloud-native and microservices
applications. Its lightweight, high-performance design supports pub/sub and queue-based
messaging and stream data processing. NATS JetStream is a second-generation streaming
platform that integrates directly into NATS. NATS JetStream replaces the older NATS streaming
platform and addresses its limitations, such as the lack of message replay, retention policies,
persistent storage, stream replication, stream mirroring, and exactly-once semantics.

NATS utilizes a single-server architecture, which makes it easy to deploy and manage,
particularly in resource-constrained environments. However, NATS does not support message
durability and may not be suitable for applications that require this or complex message routing
and transformations. Despite this, NATS offers an asynchronous, event-driven model that is
well-suited for simple pub/sub and queue-based messaging patterns due to its high
performance and low latencies.

Overview of Tests

What We Tested

We conducted four benchmark tests to evaluate each platform’s performance under various
conditions, such as workload variations, node failure, and backlogs. The aim was to assess each
platform’s responses to these conditions and to provide insights into their capabilities in a given
environment.

1. Node failure

Failures will inevitably occur in any platform, so it’s vital to understand how each platform will
respond to and recover when such events occur. This test aimed to evaluate the performance of
each platform in response to a single node failure and subsequent recovery. To simulate a node
failure, we performed broker terminations and resumptions via systemctl stop on the node.
We then monitored the performance of the remaining nodes as they took on the workload of the
failed node. We anticipated a decrease in producer throughput and an increase in producer
latency upon failure due to the overall reduction in the cluster’s resources.

2. Topic counts

This test examined the relationship between peak throughput and latency and the number of
topics within a platform. We measured the performance of each platform at various topic counts,
from very small to very large, to understand how the platform’s performance changed as the
number of topics grew. We expected that for very small topic counts, the platform would exhibit
sub-par performance due to its inability to utilize available concurrency effectively. On the other
hand, for very large topic counts, we expected performance to degrade as resource contention
became more pronounced. This test aimed to determine the maximum number of topics each
messaging platform could support while maintaining acceptable performance levels.

3. Subscription counts

Scaling a messaging platform can be a challenging task. As the number of subscribers per topic
increases, changes in peak throughput and latency are expected due to the read-amplification
effect. The imbalance between writes and reads occurs because each message is read multiple
times. Despite this, we would expect the tail reads to be relatively lightweight compared to the
producer’s writes, which are most likely coming from a cache. Increased competition among
consumers to access each topic may also lead to a drop in performance. This test aimed to
determine the maximum number of subscriptions per topic that could be achieved on each
messaging platform while maintaining acceptable performance levels. However, scaling
complexity increases non-linearly and potential bottlenecks arise from shared resources.

4. Backlog draining

One of the essential roles of a messaging bus is to act as a buffer between different applications
or platforms. When consumers are unavailable or not enough, the platform accumulates the data
for later processing. In these situations, it is vital that consumers can quickly drain the backlog of
accumulated data and catch up with the newly produced data. During this catch-up process, it is
crucial that the performance of existing producers is not impacted in terms of throughput and
latency, either on the same topic or on other topics within the cluster. This test aimed to evaluate
the ability of each messaging bus to effectively support consumers in catching up with backlog
data while minimizing the impact on the producer performance.

How We Set Up the Tests

We conducted all tests using the OpenMessaging Benchmark tool on AWS EC2 instances. For
consistency, we utilized similar instances to test each messaging platform. Our workloads used
1KB messages with randomized payloads and a single partition per topic. We had 16 producers,
and 16 consumers per subscription, with one subscription in total. To ensure durability, we
configured topics to have two guaranteed copies of each message, resulting in a replica count of
three. We documented any deviations from the protocol in the individual tests.

We conducted these tests at each platform’s “maximum producer rate” for the outlined hardware
and workload configuration. Although the OMB tool includes an adaptive producer throughput
mode, this was not found to be reliable and would often undershoot or behave erratically.
Instead, we adopted a manual protocol to determine appropriate producer throughput rates. For
each workload, we ran multiple test instances at different rates, narrowing down the maximum
attainable producer rate that resulted in no producer errors and no accumulating producer or
consumer backlog. In this scenario, we could be confident that the platform would be in a steady
state of near maximum end-to-end throughput. Given the discrete nature of this protocol, it is
possible that real-world maximum producer rates could be slightly higher and have greater
variability than those determined for the tests.

Infrastructure topology

Client instances: 4 x m5n.8xlarge
Broker instances: 3 x i3en.6xlarge

Platform versions

Apache Pulsar: 211.0
RabbitMQ: 3.10.7
NATS JetStream: 2.9.6

https://github.com/openmessaging/benchmark

Platform-specific caveats

Pulsar — Our Pulsar setup had the broker and bookies co-located on the same VM, 3 x
i3en.6xlarge topology. The ZooKeeper instance was set up separately with 3 x i3en.2xlarge
topology.

RabbitMQ - We conducted tests using Quorum Queues, the recommended method for
implementing durable and replicated messaging. While the results indicated that this operating
mode in RabbitMQ has slightly lower performance than the “classic” mode, it offers better
resilience against single-node failures.

NATS JetStream — During our tests, we attempted to follow the recommended practices for
deliverGroups and deliverSubjects in NATS, but encountered difficulties. Our NATS
subscriptions failed to act in a shared mode and instead exhibited a fan-out behavior, resulting in
a significant read amplification of 16 times. This likely significantly impacted the overall publisher
performance in the subscription count test. Despite our best efforts, we were unable to resolve
this issue.

Benchmark Parameters & Results

All reported message rates are platform aggregates, not for individual topics, producers,
subscriptions, or consumers.

1. Node failure

Test Parameters

In a departure from the standard test parameters, in this test we employed five broker nodes
instead of three and five client nodes instead of three — two producing and three consuming.
We made this change to satisfy the requirement for three replicas of a topic, even when one
cluster node is absent.

In each case, messages were produced onto 100 topics by 16 producers per topic. Messages
were consumed using a single subscription per topic, shared between 16 consumers.

We adopted the following test protocol: five minutes of warm-up traffic, clean termination of a
single broker node, five minutes of reduced capacity operation, resumption of the terminated
broker, and five minutes of normal operation. The broker was intentionally terminated and
resumed using the systemctl stop command on the node to simulate a failure.

Test Results

Figure 2 - Node Failure and Recovery Producer Throughput (msgs/s)
100 topics, 16 producers per topic; 1 subscription per topic, 16 consumers per subscription

Apache Pulsar — RabbitMQ — NATS JetStream
Node Failure Node Recovery
300,000
WWW
250,000
200,000
150,000
100,000
50,000 smg—m o A A A A A o o S e R e e S =
0
0 300 600 900

Time (s)

Figure 2 - Node Failure and Recovery - Producer Throughput (msgs/s)

Average Producer Throughput (msgs/s)

Node State
Apache Pulsar RabbitMQ NATS JetStream
Before Node Failure 260K 45K 45K
Node Failure 260K 45K 45K
After Node Recovery 260K 44K 45K

Figure 3 - Node Failure and Recovery Producer P99 Latency (ms)
100 topics, 16 producers per topic; 1 subscription per topic, 16 consumers per subscription

Apache Pulsar — RabbitMQ — NATS JetStream

Node Failure Node Recovery
100,000 i

10,000 MW
T —

1,000

100 W\,Jv\ﬁf—

0 300 600 900
Time (s)

Figure 3 - Node Failure and Recovery - Producer P99 Latency (ms)

Producer P99 Latency (ms)
Node State
Apache Pulsar RabbitMQ NATS JetStream
Before Node Failure 113 6.6K 15
Node Failure 147 7.6K 40
After Node Recovery 168 8.2K 40

Pulsar — Given that Pulsar separates computing and storage, we ran two experiments to test the
behavior in the event of a failed broker and a failed bookie. We consistently observed the
expected publisher failover in both cases, with an average publish rate of 260K msgs/s. There
was no noticeable decline in publish rate and an increase in latency from 113 milliseconds to 147
milliseconds when running on fewer nodes. Our results for both broker and bookie termination
scenarios were very similar.

RabbitMQ - In the test with RabbitMQ, we noted a successful failover of producers from the
terminated node, maintaining an average publish rate of 45K msgs/s. At the time of node failure,
the publish latency increased from 6.6 seconds to 7.6 seconds. However, upon restart, RabbitMQ
did not rebalance traffic back onto the restarted node, resulting in a degraded publish latency of
8.2 seconds. We suspect this behavior is attributed to the absence of a load balancer in the
default configuration used. Nevertheless, it should be possible to implement an external
load-balancing mechanism.

NATS JetStream — During the test with NATS, we observed successful failover of producers from
the terminated node, with an average publish rate of 45K msgs/s. When we attempted to reach
higher publish rates, however, the failover did not always occur, resulting in a corresponding
increase in publish errors. The producers switched over to the alternate node within
approximately 20 seconds of the broker termination. The publisher rates remained stable with
minimal disruptions throughout the test. Despite this, there was an increase in p99 publish
latency (as seen in Figure 3), rising from 15 milliseconds to 40 milliseconds. This latency increase
persisted for the test's duration, even after the terminated broker was resumed.

Analysis

All platforms successfully transferred the work of a failed broker to other nodes and maintained
the target publisher rate. It's important to note that NATS JetStream did not achieve this
consistently. Both RabbitMQ and NATS JetStream showed an increase in p99 publish latency,
which was expected, but they did not recover after the reintroduction of the terminated broker.
This suggests that the platforms did not effectively redistribute the work to the resumed broker.

In contrast, Pulsar was the only platform that consistently and successfully transferred the work
to other nodes and maintained an unaffected publish rate with a slight increase in p99 latency.
Moreover, Pulsar was able to achieve an average publish rate of 260K msgs/s when running on
fewer nodes, demonstrating its ability to scale efficiently even in the face of node failures.

2. Topic counts

Test Parameters

In this test, we ran multiple tests on each platform, varying the number of independent topics in
each instance and measuring the publish throughput and latency.

Test Results

1,000,000

800,000

600,000

400,000

200,000

Apache Pulsar —

RabbitMQ —

NATS JetStream

—

Figure 4 - Maximum Producer Throughput (msgs/s) by Number of Topics
16 producers per topic; 1 subscription per topic, 16 consumers per subscription

0
1

—_—

10

Topics Counts

1,000

10,000 20,000

Figure 4 - Maximum Producer Throughput (msgs/s) by Number of Topics

Number of Topics

Maximum Producer Throughput (msgs/s)

Apache Pulsar RabbitMQ NATS JetStream
1 550K 20K 30K
10 1.0M 40K 50K
50 1.0M 30K S0K
100 350K 27K 40K
500 350K 20K 30K
20,000 200K N/A N/A

Figure 5 - Producer P99 Latency (ms) by Number of Topics
16 producers per topic; 1 subscription per topic, 16 consumers per subscription
Apache Pulsar — RabbitMQ — NATS JetStream
15,000
12,000
9,000
6,000
3,000
0 _ ——— —_— —_——
1 10 100 1,000 10,000 20,000
Topics Counts
Figure 5 - Producer P99 Latency (ms) by Number of Topics
Producer P99 Latency (ms)
Number of Topics
Apache Pulsar RabbitMQ NATS JetStream
1 7 344 22
10 14 3,734 75
50 24 7,502 1,064
100 93 13,740 866
500 - 8,565 72
20,000 293 N/A N/A

Pulsar — The platform achieved an aggregate publisher throughput of 1M msgs/s with a topic
count between 10 and 50. Across thousands of topics, Pulsar maintained low publisher p99
latency, ranging from single-digit milliseconds to low hundreds of milliseconds (~7 ms to 300
ms).

We can see from the chart that there was a negative inflection point in the throughput when the
number of topics exceeded 100. This variation can be attributed to the effectiveness of batching
at different topic counts:

e With fewer topics, the throughput per topic is relatively high and it conducts for a very
high batching ratio (messages/batch). This means that it's very efficient to move a large
number of messages through the platform, in a small amount of batches. In these
conditions, the bottleneck is typically on the I/O system.

e With more topics, we are spreading the throughput over a larger number of them. The
per-topic throughput is therefore lower and the batching ratio decreases, until we end up
with just one message per batch. At this point, the bottleneck has shifted to the CPU cost
instead of the I/O system.

RabbitMQ — The publisher throughput fluctuated between 20K and 40K msgs/s across the range
of topics. Meanwhile, the p99 publish latency rose significantly. These latencies often exceeded
multiple seconds, ranging from 344 milliseconds to nearly 14 seconds. Testing was stopped after
500 topics as it became challenging to construct the topics in a reasonable amount of time.

NATS JetStream — The best performance was observed when using 10 to 50 topics, with a rate
of 50K msgs/s. As the number of topics increased beyond 50, the throughput gradually
decreased. The p99 publisher latencies also started to increase, starting from 75 milliseconds at
10 topics to over one second at 100 topics. The testing was stopped at 500 topics due to the
difficulty in constructing additional topics, but the system could still handle 30K msgs/s at this
configuration.

Analysis

The results suggest that all of the platforms tested could handle larger topic counts in real-world
scenarios where topics accumulate gradually over time, rather than the time-consuming process
of generating test topics. Despite this, RabbitMQ and NATS JetStream demonstrated a
performance decline when concurrently publishing a very large number of topics.

On the other hand, Pulsar outperformed RabbitMQ and NATS JetStream in the number of topics,
publish rate, and latency. The results show that Pulsar could handle 10 times more topics. Pulsar
achieved up to 1M msgs/s, surpassing RabbitMQ by 33 times and NATS JetStream by 20 times.
Pulsar also demonstrated exceptional latency performance, with p99 latency 300 times better
than RabbitMQ and 40 times better than NATS JetStream at 50 topics. Pulsar was able to
maintain producer throughput of 200K msgs/s at 20K topics.

3. Subscription counts

Test Parameters

In this test, we expected a significant boost in reads with a larger number of subscribers. To
achieve this, we limited the number of concurrent topics to 50, assigned a single consumer to
each subscription, and set a minimum aggregate publish rate of 1K msgs/s for the platform.

Test Results

Figure 6 - Maximum Producer Throughput (msgs/s) by Number of Subscriptions
Limited to 50 topics, 16 producers per topic; 1 consumers per subscription
Apache Pulsar — RabbitMQ — NATS JetStream
1,000,000
800,000
600,000
400,000
200,000
O%‘__\‘_r_ﬁﬁ*—| (— T T L—
1 10 100 1,000 5,000
Subscription Counts

Figure 6 - Maximum Producer Throughput (msgs/s) by Number of Subscriptions

Number of Maximum Producer Throughput (msgs/s)
Subscriptions Apache Pulsar RabbitMQ NATS JetStream
1 ™ 30K 75K
10 178K 3.5K ,

>0 35K 705 oK+
100 20K N/A 1K*
5,000 359 N/A N/A

*Estimate based on subscription = 32, 64, and 128

Figure 7 - Maximum Consumer Throughput (msgs/s) by Number of Subscriptions
Limited to 50 topics, 16 producers per topic; 1 consumers per subscription
Apache Pulsar — RabbitMQ — NATS JetStream
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000
500,000
0 T T T T T T T T T T T T T
1 10 100 1,000 5,000
Subscription Counts

Figure 7 - Maximum Consumer Throughput (msgs/s) by Number of Subscriptions

Maximum Consumer Throughput (msgs/s)
Number of
Subscriptions Apache Pulsar RabbitMQ NATS JetStream
1 1.0M 30K 75K
10 1.8M 35K 160K*
20 2.6M 35K 160K*
50 1.8M 35K -
100 2.0M N/A -
5,000 1.6M N/A N/A

*Estimate based on subscription = 16, 32, and 64

Figure 8 - Producer P99 Latency (ms) by Number of Subscriptions

Limited to 50 topics, 16 producers per topic; 1 consumers per subscription

Apache Pulsar — RabbitMQ — NATS JetStream
60,000
50,000
40,000
30,000
20,000
10,000
07 1 T —T T T : :
1 10 100 1,000 5,000

Subscription Counts

Figure 8 - Producer P99 Latency (ms) by Number of Subscriptions

Number of Producer P99 Latency (ms)
Subscriptions Apache Pulsar RabbitMQ NATS JetStream
1-50 Up to 60K Up to 50K Up to 34
50 -100 Up to 413 Up to tens of seconds Upto3
100 - 1,000 Up to 572 N/A Up to 30
1,000 - 5,000 Up to 37K N/A N/A

Pulsar — We were able to achieve a maximum of 5K subscriptions per topic before consumers
started to fall behind. However, even with higher subscription numbers, the publish latency
remained low. In fact, we measured peak consumer throughput at an impressive 2.6M msgs/s.
During our test, we identified an issue with many concurrent I/O threads competing for the same
resource. However, we were able to address this in Pulsar version 2.11.1. For more information on
this issue, please refer to the GitHub PR #19341.

RabbitMQ - The maximum number of successful subscriptions per topic achieved was 64.
Beyond that, the publish rate dropped to around 500 msgs/s, and the p99 publish latency
increased significantly to tens of seconds. Additionally, the clients became unresponsive beyond
64 subscriptions. However, the aggregate consumer throughput remained around 35K msgs/s
and reached a peak of 48K msgs/s when there were eight subscriptions.

NATS JetStream — We achieved a maximum of 128 subscriptions per topic. As the number of
subscriptions increased, there was an increase in publisher errors and lagging consumers.
Despite this, the publish latency remained consistently low, ranging from 3 milliseconds to 34
milliseconds across all subscriptions. The highest consumer throughput was recorded at 160K
msgs/s during eight to 32 subscriptions.

Analysis

As expected in this test case, end-to-end throughput became limited by the consumer. Pulsar
was able to support hundreds of subscriptions per topic while maintaining very low publish
latency. RabbitMQ and NATS JetStream achieved fewer subscriptions, and RabbitMQ
experienced a significant increase in publish latency as the number of subscriptions increased.
Pulsar stood out as the most efficient platform, demonstrating a publish rate and an aggregate
consumer throughput that were both an order of magnitude higher than the other platforms.

https://github.com/apache/pulsar/pull/19341

4. Backlog draining

Test Parameters

In this test, the conditions were set to generate a backlog of messages before consumer activity
began. Once the desired backlog size was reached, consumers were started, and messages
continued to be produced at the specified rate. The backlog size was set to 300GB, larger than
the available RAM of the brokers, simulating a scenario in which reads would need to come from
slower disks rather than memory-resident caches. This was done to evaluate the platform's
ability to handle catch-up reads, a common challenge in real-world scenarios.

During the tests, messages were produced on 100 topics, with 16 producers per topic. Messages
were consumed using a single subscription per topic, shared between 16 consumers.

Test Results

Figure 9 - Queue Backlog and Recovery - Producer Throughput (msgs/s)
100 topics, 16 producers per topic; 1 subscription per topic, 1 consumers per subscription; 300GB

Apache Pulsar — RabbitMQ —

105,000
100,000

80,000

60,000

40,000

20,000

0 3,000 6,000 9,000 12,000 15,000
Time (s)

Figure 9 - Queue Backlog and Recovery - Producer Throughput (msgs/s)

Average Producer Throughput (msgs/s)

300GB Queue Backlog
Apache Pulsar RabbitMQ
Pre-Drain 100K 30K
Drain 100K 12.5K
Post-Drain 100K 37K

Figure 10 - Queue Backlog and Recovery - Consumer Throughput (msgs/s)
100 topics, 16 producers per topic; 1 subscription per topic, 1 consumers per subscription; 300GB

400,000

300,000

200,000

100,000

Apache Pulsar — RabbitMQ —

0 3,000

6,000
Time (s)

9,000

12,000

Figure 10 - Queue Backlog and Recovery - Consumer Throughput (msgs/s)

15,000

Average Consumer Throughput (msgs/s)

300GB Queue Backlog
Apache Pulsar RabbitMQ
Pre-Drain 100K 30K
Drain 213K 121K
Post-Drain 100K 37K

Figure 11 - Queue Backlog and Recovery - Producer P99 Latency (ms)
100 topics, 16 producers per topic; 1 subscription per topic, 1 consumers per subscription; 300GB

Apache Pulsar — RabbitMQ —
100,000
10,000

1,000

100

bl WAy, ol

0 3,000 6,000 9,000 12,000 15,000
Time (s)

Figure 11 - Queue Backlog and Recovery - Producer P99 Latency (ms)

Average Producer P99 Latency (ms)
300GB Queue Backlog
Apache Pulsar RabbitMQ
Pre-Drain 4.7 11K
Drain 5.3 34K
Post-Drain 4.9 13K

Pulsar — In this test, Pulsar delivered impressive results in terms of producer and catch-up read
rates. The producer rate remained stable at 100K msgs/s before, during, and after the drain, and
catch-up reads averaged 200K msgs/s. The drain itself was completed in approximately 45
minutes.

During the backlog drain phase, a slight increase in p99 publish latency from 4.7 milliseconds to
5.3 milliseconds was observed. However, this was expected due to the increased contention
between producers and consumers.

One of the most noteworthy findings of the test was that Pulsar's consumer throughput returned
to its pre-drain level after the drain was complete. This showcased Pulsar’s ability to handle high
volumes of data without compromising performance.

RabbitMQ —RabbitMQ was able to achieve its target producer rate of 30K msgs/s, but the
platform faced a challenge when reads dominated during backlog production, leading to a steal
of IOPS and hindering message production. This resulted in a reduction of the producer rate to
12.5K msgs/s, with a latency increase of three times from 11 to 34 seconds. However, the
catch-up reads were swift, starting at 80K msgs/s and steadily rising to 200K msgs/s. After 50
minutes, most of the backlog had been drained, and the producer throughput was regained, with
the latency returning to approximately 13 seconds. Despite a consistent yet small consumer
backlog, the platform remained stable.

NATS JetStream — Unfortunately, NATS could not produce any results in this test. The clients
encountered OOM errors while building the backlog, which we suspect might be due to a
potential issue in the jnats library.

Analysis

Pulsar demonstrated impressive producer and catch-up read rates during the test, with stable
performance before, during, and after the drain. Pulsar's consumer throughput returned to its
pre-drain level, showcasing its ability to handle high volumes of data without compromising
performance. Pulsar also outperformed RabbitMQ by being 3.3 times faster in producing and
consuming, and the drain would have been completed even faster if Pulsar had been set to a
30K msgs/s producer rate.

RabbitMQ demonstrated some impressive consumer rates when reading the backlog. However,
this came at the cost of message production, as the consumers had clear priority. In a real-world
scenario, applications would be unable to produce during the catch-up read and would have to
either drop messages or take other mitigating actions.

It would have been interesting to see how NATS JetStream performed in this area, but further
work will be needed to investigate and resolve the suspected client issue.

Cconclusion

The benchmark tests showed that Pulsar can handle significantly larger workloads than
RabbitMQ and NATS JetStream and remain highly performant in various scenarios. Pulsar proved
its reliability in the presence of node failure and its high scalability for both topics and
subscriptions. Conversely, RabbitMQ and NATS JetStream both showed a decline in
performance when concurrently publishing a large number of topics.

The results suggest that while all three platforms are suitable for real-world scenarios, it is
crucial to carefully evaluate and choose the technology that best aligns with the specific needs
and priorities of the application.

Key findings summarizing Pulsar’s performance:

1. Pulsar maintained high publish rates despite broker or bookie failure. No degradation in
rates occurred when running on fewer nodes, with 5 times greater maximum publish rates
than RabbitMQ and NATS JetStream.

2. Pulsar achieved high performance with 1M msgs/s, surpassing RabbitMQ by 33 times and
NATS JestStream by 20 times. With a topic count of 50, p99 latency was 300 times better
than RabbitMAQ and 40 times better than NATS JetStream. Pulsar was able to maintain a
producer throughput of 200K msgs/s at 20K topics. In contrast, RabbitMQ and NATS
JetStream failed to construct topics beyond 500 counts.

3. Pulsar supported 1,024 subscriptions per topic without impacting consumer performance,
while maintaining low publish latency and achieving a peak consumer throughput of 2.6M
msgs/s. This was 54 times faster than RabbitMQ and 43 times faster than NATS
JetStream.

4. Pulsar achieved stable publish rates and an average catch-up read throughput of 200K
msgs/s during the backlog drain test case. In comparison, RabbitMQ’s publish rate
dropped by over 50 percent during draining and resulted in an increase in publish latency
by three times.

RabbitMQ may be a suitable option for applications with a small number of topics and a
consistent publisher throughput, as the platform struggles to deal with node failures and large
backlogs. NATS may be a good choice for applications with lower message rates and a limited
number of topics (less than 50). Overall, the results show Pulsar outperforms RabbitMQ and
NATS JetStream in terms of throughput, latency, and scalability, making Pulsar a strong
candidate for large-scale messaging applications.

Want to Learn More?
For more on Pulsar, check out the resources below.

1. Learn more about how leading organizations are using Pulsar by checking out the latest
Pulsar success stories.

2. Use StreamNative Cloud to spin up a Pulsar cluster in minutes. Get started today.

Engage with the Pulsar community by joining the Pulsar Slack channel.

4. Expand your Pulsar knowledge today with free, on-demand courses and live training from
StreamNative Academy.

w

About StreamNative

StreamNative is a messaging and streaming platform powered by Apache Pulsar and built for
cloud-native, event-driven applications. Founded in 2019 by the original creators of Pulsar,
StreamNative has more experience designing, deploying, and running large-scale Apache Pulsar
instances than any other team in the world. With StreamNative Cloud, you get a fully managed
Pulsar-as-a-Service offering available in our cloud or yours. Learn more at streamnative.io.

References

(1] Comparlng Pulsar and Kafka: Unlfled Queulng and Streaming:

ing. html
[2] The Linux Foundation Open Messaging Benchmark suite:

http://openmessaging.cloud/docs/benchmarks
[3] The Open Messaging Benchmark Github repo:
https://dithub.com/openmessaging/benchmark
[4] GitHub Pull Request #19341:
https://github.com/apache/pulsar/pull/19341

https://streamnative.io/success-stories
https://streamnative.io/success-stories
https://streamnative.io/deployment
https://communityinviter.com/apps/apache-pulsar/apache-pulsar
https://www.academy.streamnative.io/
https://streamnative.io/
https://www.splunk.com/en_us/blog/it/comparing-pulsar-and-kafka-unified-queuing-and-streaming.html
https://www.splunk.com/en_us/blog/it/comparing-pulsar-and-kafka-unified-queuing-and-streaming.html
http://openmessaging.cloud/docs/benchmarks/
https://github.com/openmessaging/benchmark
https://github.com/apache/pulsar/pull/19341

